The $2$-transitive permutation representations of the finite Chevalley groups
نویسندگان
چکیده
منابع مشابه
QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملquasi-permutation representations of metacyclic 2-groups
by a quasi-permutation matrix we mean a square matrix over the complex field c with non-negative integral trace. thus, every permutation matrix over c is a quasipermutation matrix. for a given finite group g, let p(g) denote the minimal degree of a faithful permutation representation of g (or of a faithful representation of g by permutation matrices), let q(g) denote the minimal degree of a fai...
متن کاملFinite Transitive Permutation Groups and Finite Vertex-Transitive Graphs
The theory of vertex-transitive graphs has developed in parallel with the theory of transitive permutation groups. In this chapter we explore some of the ways the two theories have influenced each other. On the one hand each finite transitive permutation group corresponds to several vertex-transitive graphs, namely the generalised orbital graphs which we shall discuss below. On the other hand, ...
متن کاملFinding Minimal Permutation Representations of Finite Groups
A minimal permutation representation of a finite group G is a faithful G-set with the smallest possible cardinality. We study the structure of such representations and show that for most groups they may be obtained by a greedy construction. It follows that whenever the algorithm works (except when central involutions intervene) all minimal permutation representations have the same set of orbit ...
متن کاملSmall degree representations of finite Chevalley groups in defining characteristic
We determine for all simple simply connected reductive linear algebraic groups defined over a finite field all irreducible representations in their defining characteristic of degree below some bound. These also give the small degree projective representations in defining characteristic for the corresponding finite simple groups. For large rank l our bound is proportional to l3 and for rank 11 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1976
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1976-0422440-8